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Abstract
In recent years, urgent needs for counting crowds and vehicles have greatly promoted research of crowd counting and density 
estimation. Benefiting from the rapid development of deep learning, the counting performance has been greatly improved, 
and the application scenarios have been further expanded. Aiming to deeply understand the development status of crowd 
counting and density estimation, we introduce and analyze the typical methods in this field and especially focus on elaborat-
ing deep learning-based counting methods. We summarize the existing approaches into four categories, i.e., detection-based, 
regression-based, convolutional neural network based and video-based. Each category is explicated in great detail. To provide 
more concrete reference, we compare the performance of typical methods on the popular benchmarks. We further elaborate 
on the datasets and metrics for the crowd counting community and discuss the work of solving the problem of small-sample-
based counting, dataset annotation methods and so on. Finally, we summarize various challenges facing crowd counting and 
their corresponding solutions and propose a set of development trends in the future.
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1 Introduction

Crowd counting and density estimation have been challeng-
ing tasks in image and video analysis for many years. Accu-
rate crowd counting is helpful for pedestrian flow analysis 
and crowd density estimation and has a wide range of appli-
cations such as public safety, smart transportation and video 
surveillance. Early crowd counting and density estimation 
approaches are mainly based on pedestrian detection [1–3]. 
In crowded scenes, due to the factors such as mutual occlu-
sions and varying scales, the performance of these methods 
is difficult to achieve satisfactory results, making it diffi-
cult to be adopted in practical applications. An alternative 

method is to estimate the crowd density in the image and 
finally give a crowd density level [4–10]. However, the qual-
ity of this crowd density classification method is relatively 
rough, which limits its application in many scenarios. In 
recent years, with the rapid development of deep learning, 
the performance of crowd counting has made great progress, 
and the counting accuracy and speed have been significantly 
improved under crowded conditions. In order to sort out 
the research methods and the evolution of crowd counting 
approaches, this paper reviews the main ideas and methods 
of crowd counting. Especially, we conduct a detailed review 
of the latest methods based on deep learning.

This paper divides the development of crowd counting 
and density estimation into four branches, i.e., detection-
based methods, regression-based methods, CNN-based 
methods and video-based methods. The detection-based 
methods count the number of objects through an object 
detector trained on the extracted image features. The meth-
ods work well in low-density scenarios, but as the density 
of the crowd increases, the performance of such methods 
decreases accordingly. In the case of dense crowds, research-
ers found that learning a mapping between image features 
to the number of individuals is helpful and the performance 
of the methods based on these mappings outperforms the 
detection-based methods [8]. These methods usually train a 
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regression model from the learned mappings and are called 
as regression-based methods. However, the methods rely 
heavily on the hand-crafted features, and lack of robustness 
in the scenarios with large changes in light, perspective, 
crowd distribution, crowd density, etc. Given the powerful 
feature extraction capabilities of CNNs in deep learning, 
researchers tried to use them to automatically extract fea-
tures and trained an end-to-end network to count individuals. 
The methods can adapt to changes in various factors, predict 
the number of individuals more accurately and achieved the 
state of the art on many popular evaluation benchmarks. 
In this work, we mainly focus on the CNN-based methods.

As just mentioned, crowd counting is still facing many 
challenges, such as severe occlusions, changing scenes, 
complex noise, various scales, different perspectives and 
non-uniform distributions of individuals. In order to provide 
datasets and benchmarks that are as close to the actual scene 
as possible, researchers have built many datasets of crowd 
counting. The most popular datasets are UCSD [11], Mall 
[12], UCF_CC_50 [13], WorldExpo 10 [14], ShanghaiTech 
[15], UCF-QNRF [16], the newly proposed GCC [17], etc. 
These datasets greatly promoted the development of crowd 
counting. However, compared with the data required for 
practical applications, the situation of shorting data still 
exists. Many methods are studying how to use less labeled 
data to accurately count the number of individuals, among 
which the typical ones are L2R [18], GWTA-CCNN [19], 
CAC [20], SL2R [21], SFCN [17], which will be explained 
in more detail later.

To the best of our knowledge, there are already some 
reviews and evaluations in the field of crowd counting. Ref. 
[22–26] are some of the earlier ones released in 2015 and 
before. Considering the rapid advance of crowd counting, 
they do not cover the new current research works. Recent 
review works like Ref. [27–35] review this field from differ-
ent perspectives and classification methods, such as Ref. [27, 
34] sort and analyze existing CNN-based works according 
to the network structure and inference methodology. In addi-
tion, Luo et al. [32] classified them according to the super-
vision standpoint. Compared with the above works, we put 
more emphasis on the current difficulties and their corre-
sponding processing strategies. Furthermore, we elaborate 
on the datasets and metrics of crowd counting and discuss 
the works of solving the problem of small-sample-based 
counting, dataset annotation methods and so on. Finally, we 
discuss various challenges facing crowd counting and their 
corresponding solutions, as well as propose a set of develop-
ment trends in the future.

The main contributions of this paper are three aspects: 

1. We systematically review almost all popular methods in 
crowd counting and crowd density estimation in nearly 
20 years and discuss their characteristics in great detail.

2. We propose a novel classification criterion to classify 
the CNN-based crowd counting methods.

3. We discuss the challenges in crowd counting and pre-
dict the potential trends and promising directions in the 
future.

The following paper is organized as follows: The second sec-
tion analyzes the main works of the four branches in crowd 
counting. We first briefly review detection-based and regres-
sion-based methods and then focus on CNN-based methods. 
The third part introduces some of the popular datasets and 
related works, as well as some commonly used evaluation 
criteria. The fourth section discusses the application and 
future work of crowd counting.

2  Methodologies

Existing crowd counting methods can be divided into three 
major categories: detection-based methods, regression-based 
methods and CNN-based methods. The regression-based 
methods can be further divided into individual-based and 
density map-based methods. We also list some typical works 
in crowd counting in the form of a timeline, as shown in 
Fig. 1.

2.1  Detection‑based methods

Most early crowd counting works are based on detection. 
They use the features extracted by the elaborately designed 
detector to count targets. Detection-based methods strongly 
rely on the characteristics of the targets. Feature extraction 
methods can be divided into integral-based and parts-based. 
The integral-based detection methods first extract the fea-
tures of the entire image, such as edges [57], shapelets [58], 
textures, HOG [59] and Haar wavelets [60] and then use 
SVM [61], boosting [58, 62], random forest [37, 63], cluster-
ing [37] or other algorithms to detect or classify objects for 
crowd counting. Most of these methods have achieved good 
performance when the objects are sparse, but the counting 
effect will decrease remarkably when facing dense crowds. 
Therefore, researchers began to explore effectively count-
ing methods in more dense crowd scenarios. It has been 
observed that in most dense crowd scenarios, using local 
features can greatly improve the counting performance com-
pared with global features. Many works [64–67] work based 
on local features. It is worth mentioning that recently Laradji 
et al. [68] and Liu et al. [69] continue working on detection-
based methods. The former does not need to estimate the 
size and shape of the object but propose a novel loss func-
tion that encourages the network to output a single blob per 
object instance using only point-level annotations. The latter 
avoids the expensive labeling cost of bounding boxes and 
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only uses the supervised information of the points to train 
the model.

When counting high-density crowd, detectors are hard 
to train due to more severe occlusions, etc. In this case, the 
performance of parts-based detection methods is also sig-
nificantly decreased. The regression-based detection meth-
ods avoid the dependence on the detector and often have 
higher performance and capture growing attentions in crowd 
counting.

2.2  Regression‑based methods

According to the different regression goals, the methods 
can be divided into individual-based regression [8, 12, 13, 
70–72] and density-map-based regression. The former was 
proposed a little earlier. Compared with the parts-based 
detection methods, the individual-based methods further 
improved the counting performance. For examples, Ke 
et al. [12] first normalized the foreground of the image and 
then used the extracted local foreground, edge and texture 
features to learn multiple regression to get the number of 
individuals in the image. Compared with earlier regression 
models, this method enhanced the robustness of the model 
by learning a low-dimensional feature and a multi-structured 
output function, making it applicable to more practical sce-
narios. With further research, the concept of density map 
proposed by Lempitsky and Zisserman [36] has attracted 
widespread attention from researchers. It avoids the depend-
ence on the detector by learning the mapping of images to 
density maps. Rodriguez et al. [73] confirmed that count-
ing using density map can improve counting performance 
immensely. By reason of the density map not only reflects 
the spatial distribution information of the crowd but also 
increases the counting accuracy, density-map-based regres-
sion gradually becomes a popular category.

Similar to the detection-based methods, the methods of 
regression can be divided into integral-based [8, 70, 74] 
and patch-based [12, 75–77] categories. The integral-based 
regression methods invariably have difficulties in dealing 
with large scale and density changes while the patch-based 
regression methods contain more local information of the 
image and are less affected by changes in scale and density. 
Therefore, the performance of the patch-based regression 
methods is often better than the integral-based. Pham et al. 
[37] divided an image into multiple patches and used ran-
dom forest to classify features, so that the leaf nodes of each 
tree contained only similar features. Meanwhile, the author 
also proposed crowdedness prior to make the prediction of 
the density of the next patch more accurate, which improved 
the model performance considerably.

Although the regression-based methods alleviate the 
dependency on the detector, they still rely heavily on hand-
crafted features. Consequently, feature extraction algo-
rithm became a crucial bottleneck for the regression-based 
methods. With the rapid development of deep learning, the 
powerful feature extraction capabilities of convolutional 
neural networks (CNNs) have a tremendous fascination on 
the researchers, and the CNN-based crowd counting meth-
ods and crowd density estimation methods are developing 
rapidly.

2.3  CNN‑based methods

In recent years, deep learning has increasingly attracted 
attention of researchers. CNNs have shown strong learning 
capabilities in image processing, inspiring plenty of CNN-
based crowd counting works. Min et al. [78] is the first 
approach that applied CNN to crowd counting. However, it 
only estimated the crowd density level and not the specific 
number of the crowd. Since then, counting work based 
on CNN has progressed rapidly. The CNN-based methods 

Fig. 1  Typical works in crowd counting in the form of a timeline. 
The methods listed from left to right are Chan [11], Lemptisky [36], 
Idress [13], Count Forest [37], MCNN [15], CrowdNet [38], Hydra-
CNN [39], MSCNN [40], CP-CNN [41], Switching CNN [42], 

SaCNN [43] , CSRNet [44], DRSAN [45], ic-CNN [46], SANet [47], 
ASD [48], SFCN [17], PACNN [49], ADCrowdNet [50], MMNet 
[51], NAS-Count [52], LibraNet [53], ASNet [54], ADSCNet [55], 
AMRNet [56]
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have better performance in scenarios such as the large span 
of human head scale, non-uniform density distributions 
and large changes in perspective and scene, which makes 
CNN-based approaches dominate the current crowd count-
ing research. For the current crowd counting challenges, 
researchers have adopted different methods to deal with 
them. In order to enable researchers to comprehensively 
understand the current difficulties and their corresponding 
processing strategies, we divide the existing works into 
the following seven categories, each of which represents 
a mainstream counting strategy, as shown in Fig. 2. The 
main method and its motivation in each category will be 
discussed in detail in the following subsections.

Compared with the above works, we put more empha-
sis on the current difficulties and their corresponding pro-
cessing strategies. Furthermore, we elaborate datasets and 
metrics of crowd counting and discuss the works of solv-
ing the problem of small-sample-based counting, dataset 
annotation methods and so on.

2.3.1  Multi‑scale fusion

The multi-scale feature fusion methods attempt to solve the 
problem of large varying scales of human heads and the 
size of crowds by fusing multiple different levels of features, 
which is the main challenge of crowd counting. 

1. MCNN: In order to extract features of different scales, 
Zhang et al. [15] proposed a multi-column CNN network 
model (As shown as MCNN in Fig. 3). The model con-
sists of three columns of full convolutional networks. 
The only difference in each column is the number and 
size of the convolution kernels. During model training, 
each column of the network is trained independently 
and then fine-tuned after merging. The model finally 
uses 1X1 convolution kernels to fuse features of three 
different scales to obtain a density map. Because the 
architecture does not rely on any fully connected layer, 
the size of the input image can be arbitrary. It is worth 

Fig. 2  Subcategories of CNN-based counting approaches, there 
are multi-scale fusion (MCNN [15], CrowdNet [38], SaCNN [43], 
SANet [47], TEDnet [79], MMNet [51]), attention-based (MSAN 
[80], SCAR [81], SFANet [82], Attend To Count [83], ASNet [54]), 
patch-based (Hydra-CNN [39], Switching CNN [42], IG-CNN [84]), 

multi-density map fusion(ASD [48], DecideNet [85], PACNN [49]), 
GAN-based (MS-GAN [86], CODA [87]), context-based (CP-CNN 
[41], CAC [88]), coarse-to-fine (DRSAN [45], ic-CNN [46], AMR-
Net [56])
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mentioning that they also proposed a widely used data-
set, the ShanghaiTech dataset, which contributed a large 
dataset and a benchmark to the crowd counting research 
community.

  The later proposed CSRNET [44] proved through 
experiments that the features learned from three separate 
columns in MCNN were similar, which went against the 
original intention of learning different features for each 
column. In contrast, many inefficient branch structures 
cause the model to be too computationally expensive to 
perform real-time crowd counting. However, the intui-
tion of multi-column network is very natural and instruc-
tive and many methods later followed or extended the 
idea of this design.

2. CrowdNet: Similar to MCNN, CrowdNet [38] also used 
a multi-column convolutional network to generate den-
sity maps and then predicted the corresponding crowd 
population. This method first performs multi-scale data 
enhancement on the input image and then uses a combi-
nation of deep and shallow fully convolutional networks 
to extract different levels of feature information, so that 
the network can simultaneously capture high-level fea-

tures and low-level features to achieve multi-scale fea-
ture fusion. The CrowdNet is shown in Fig. 3.

3. SaCNN: To solve the problem of varying head scales, 
most methods use multi-column convolution to extract 
features of different levels for fusion. However, these 
methods always have high computing complexity, which 
limits the real-time performance of crowd counting. 
Zhang et al. [43] proposed a scale-adaptive convolu-
tional neural network: SaCNN, as shown in Fig. 3. The 
network makes the model automatically adapt to the 
variation in scales and viewpoints in the input images 
by fusing multiple layers of features. Because the param-
eters and feature representations are shared between the 
layers of the network, the model has fewer parameters 
and is easy to train.

  Sang et al. [89] further improved SaCNN network by 
optimizing the geometry-adaptive Gaussian kernel to 
obtain a high-quality ground truth density map. Com-
bining absolute count loss and density map loss helps to 
improve the performance of the model in sparse crowd 
scenarios. It is noteworthy that the data are augmented 
using a random cropping method to improve the gener-
alization ability of the model.

Fig. 3  A glimpse of diverse range of network architectures used for crowd counting using deep networks
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  Zou et al. [90] also made some improvements to the 
network by using the deformation aggregation network 
(DA-Net) to generate fine-grained density maps. They 
used the network’s geometric transformation capabili-
ties to solve the multi-scale problem of the human head, 
etc. This is the first time that deformation aggregation 
network has been applied to the field of crowd count-
ing, which effectively enhances the robustness of the 
model to processing varying head scales. Finally, they 
used adaptive learning weights to fuse the features of 
multiple branches in the network.

4. SANet: SANet [47] used a network of codecs, which 
they call a large-scale aggregation network. The encoder 
used modules similar to the Inception architecture pro-
posed in GoogLeNet [91] to extract multi-scale header 
information. As shown in SANet in Fig. 3, the decoder 
uses a set of transposed convolutions to generate a high-
resolution density map. In addition, the author combined 
Euclidean loss and local pattern consistency loss to train 
the model.

5. TEDnet: The codec architecture network proposed in 
TEDnet [79] obtains high-resolution density maps by 
fusing multi-level features. The architecture uses the 
entire image as input, continuously encodes and decodes 
feature maps at different stages and introduces skip con-
nections for hierarchical fusion. The multi-path decoder 
in this approach aggregates features at multiple levels, 
fuses low-level detail maps with rich spatial informa-
tion and high-level semantic maps with deeper semantic 
information and then restores the resolution of the den-
sity map by upsampling.

6. MMNet: This paper proposes an end-to-end scale-aware 
network (MMNet [51]). Compared with most existing 
scale perception works, the proposed MMNet not only 
captures the multi-scale features generated by filters of 
different sizes but also integrates the multi-scale features 
generated at different stages to deal with the scale of the 
human head variety.

In addition to the above works, there are many studies that 
try to solve the problem of varying scales. Chen et al. [92] 
used a multi-column convolutional network architecture 
and gradient fusion for crowd counting. Deb and Ventura 
[93] used a multi-column dilated convolutional network 
aggregation to fuse features at different levels. However, as 
mentioned earlier, some inherent disadvantages of multi-
column networks still exist, such as the large amount of cal-
culations and the difficulties in real-time counting. There-
fore, some researchers started to study how to use a single 
network to fuse multi-scale features. Liu et al. [94] used 
laterally connected feature pyramid network to fuse high-
level features with low-level features, as shown in FCNN 
in Fig. 3. Wang et al. [95] also proposed a single-column 

counting network, which is comprised of several special 
purpose modules, four residual fusion modules for multi-
scale feature extraction, one pyramid pooling module for 
information fusion and one sub-pixel convolutional module 
for resolution restoring. The combination of these modules 
enables SCNet to effectively fuse multi-scale features in a 
compact single-column architecture. Dai et al. [96] used 
dense dilated convolutional blocks to extract information 
of continuously varying scales. Kang and Chan [97] used 
image pyramid method for multi-scale sampling. Gao et al. 
[98] constrained the density map by introducing fore/back-
ground segmentation. Some researchers also used modules 
similar to Inception to extract density map, such as Zeng 
et al. [40] introduced a multi-scale blob of different ker-
nel sizes to extract features at different levels, as shown in 
MSCNN in Fig. 3. Existing counting frameworks widely 
use the static density map supervision method proposed in 
MCNN [15], but this method cannot tolerate labeling errors 
and failed to reflect changes in the crowd scale. In order to 
solve this difficulty, an adaptive dilated convolution and a 
novel supervised learning framework named self-correction 
(SC) supervision is proposed in ADSCNet [55].

The huge span of the human head scales in images has 
always been a major problem for crowd counting. Most cur-
rent solutions are based on feature fusion on multiple scales. 
These methods mentioned in this section simply stack fea-
tures together without using weight information. A lot of 
works recently introduced the attention mechanism to crowd 
counting, which includes the works of weighted fusion of 
features.

2.3.2  Attention‑based

1. MSAN: Varior et al. [80] used a multi-branch scale-
aware attention to solve the problem of large changes 
in the head scales in the image. The network guides 
branches at different levels to predict the corresponding 
density maps at multiple scales and finally uses a soft 
attention mechanism to fuse the previously predicted 
multi-scale density maps, as shown in MSAN in Fig. 3. 
Moreover, they also introduced a scale-aware loss func-
tion to guide the network training at different stages, 
which has a significant improvement on scenes with 
large-scale changes.

2. SCAR: Gao et al. [81] noticed that most existing crowd 
counting methods only focus on the local appearance 
features of the crowd but ignored a lot of contextual 
information and attention information. Therefore, the 
authors proposed a SCAR framework (Spatial-Channel-
wise Attention Regression Network), which includes a 
SAM (Spatial-wise Attention Model) and a CAM (Chan-
nel-wise Attention Model), as shown in Fig. 3. SAM 
encodes the entire input image to obtain a wide range 
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of context information to predict the density map more 
accurately. CAM extracts the most discriminative fea-
tures from the channel, making the network model more 
robust to noisy backgrounds. Finally, the information of 
the two attention networks is integrated to obtain a fused 
density map.

3. SFANet: Aiming to overcome the problems of varying 
head scales and strong background noise in the scenes, 
SFANet [82] proposed a dual path multi-scale fusion 
networks with attention for crowd counting. They used 
the VGG-16 network as the front end for feature extrac-
tion, and the dual path multi-scale fusion networks as the 
back end to generate density maps, as shown in SFANet 
in Fig. 3. One of them highlights the crowd area in the 
image to generate an attention density map. The other 
branch fuses the features of different levels extracted 
by the VGG-16 network and finally combines with the 
generated attention density map to generate a high-
quality density map with high-resolution. Besides, this 
paper used a combination of the Euclidean loss and the 
attention map loss as the final loss function. Minimizing 
the former loss helps reduce pixel-level errors, while 
minimizing the latter loss can locate crowd areas more 
accurately.

4. Attend To Count: Zou et al. [83] proposed an adaptive 
capacity model in crowd counting. The model makes 
better use of multiple branches for prediction: Coarse 
network, Fine network and Smooth network. The Coarse 
network takes the original image as input and outputs 
a rough density map after passing through the multi-
column network. The Fine network obtains a fine-tuned 
density map area through continuous fusion between 
layers. Finally, the Smooth network combines the 
two density maps to obtain the final density map. The 
authors proposed an attention mechanism called count 
attention, as shown in Fig. 3. It continuously uses the 
coarse density map generated by the Coarse network to 
locate the dense regions and then uses the Fine network 
to fine-tune the area.

5. ASNet: In order to overcome the problem of uneven 
crowd density in the image, X. Jiang et al. [54] proposed 
a two-branch method: One branch outputs intermediate 
density maps and scale factors, and the other branch pro-
vides a corresponding attention mask. The first branch 
multiplies intermediate density maps and scaling factors 
by attention masks to generate attention-based density 
maps, which are then summed to give the final density 
map.

In addition, Hossain et al. [99] enhanced the performance 
of the counting model by focusing on both global and local 
information. Similarly, Sindagi and Patel [100] effectively 
used spatial segmentation information and high-level 

channel information through the attention mechanism. Ran-
jan et al. [101] introduced encoder attention that performed 
well in NLP to fuse local and non-local information to obtain 
a density map. Sindagi and Patel [102] used segmentation 
information for the counting network through the inverse 
attention mechanism. Liu et al. [50] proposed a scheme in 
which two sub-networks are connected in series: The atten-
tion map generator at the front end generates an attention 
density map, and the density map estimator at the back end 
obtains the final density map. The author also combined 
inception and dilated convolution for multi-scale feature 
fusion, as shown by ADCrowdNet in Fig. 3.

The attention-based methods are inspired by the human 
brain cognitive mechanism and have been proved to be 
effective in many artificial intelligence fields. The attention 
mechanism in crowd counting can remarkably improve the 
counting performance of the models in complex scenarios 
such as varying scales, complicated intensities and chang-
ing perspectives. Further research is expected in this field 
in the future.

2.3.3  Patch‑based

Patch-based counting methods divide the image into mul-
tiple patches, count them separately and fuse them at the 
final step. These approaches, to a certain extent, solved the 
problem of uneven crowd density of the input image. 

1. Hydra-CNN: To address the problems of mutual occlu-
sion and scene perspective in crowd counting, Onoro-
Rubio and L ́opez-Sastre [39] proposed two deep learn-
ing network models: CCNN and Hydra-CNN. CCNN is 
an efficient fully convolutional network model, which is 
dedicated to the accurate regression of the patch density 
maps. Hydra-CNN proposes a solution by changing the 
scale: Resize patches of different sizes in the original 
image to a normalized size so that the model can per-
ceive the changes in different scales.

  Kasmani et al. [103] further improved the model by 
reconsidering two parameters in the CCNN network: 
the size of the patch and the covariance of the Gauss-
ian function. In the CCNN, these two parameters are 
the same for each patches of all scales, which leads to 
inaccurate regression. Therefore, the author proposed an 
adaptive CCNN model to remedy this issue. The author 
first used a head detector to detect the size and position 
of the human head in each patch and then fed them into a 
FIS (Fuzzy Inference Engine) to output the correspond-
ing fuzzy information. Finally, the fuzzy information 
generated by each patch is sent to the corresponding net-
work of the CCNN, which is used to direct the counting 
process and make the result more accurate. The network 
architecture of A- CCNN is shown in Fig. 3.
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2. Switching CNN: Sam et al. [42] focused on solving the 
problem of uneven crowd density distribution in the 
input image. They used three branch networks similar 
to MCNN [15] for counting, as shown in Switch-CNN 
in Fig. 3. Unlike other approaches, it uses a classification 
network called Switch-CNN to determine which network 
branch each patch should be forwarded to. In this way, 
each patch can get the most appropriate processing and 
then can get more accurate predictions. By this means, 
it improves the problem of uneven density distribution 
in the image to some extent.

  In contrast, PaDNet [104] tried to solve this problem 
by weighting each branches of the network and achieved 
better performance in estimating of extremely high or 
low local density areas.

3. IG-CNN: Sam et al. [84] proposed an incremental net-
work model IG-CNN to explain the diversity of the 
crowd in the scene. After pre-training, a CNN-based tree 
model is gradually established, where each node repre-
sents a fine-tuned regressior tained on one subdataset. 
After that, the above process is repeated recursively, and 
finally formed a CNN tree, with the leaf nodes of the tree 
are more specialized than the parent nodes. Each patch 
in the image will be sent to an appropriate leaf node, and 
a dedicated sub-network is used to get more accurate 
predictions.

  Zhang et al. [105] used the appearance of crowd as 
an auxiliary mechanism to filter out most of the back-
ground, so that the model pays more attention to the 
human heads. The author divided the crowd image into 
multiple patches and used the spatial position of each 
patch to deal with the problem of uneven distribution of 
crowd density. Han et al. [106] first divided the image 
into multiple overlapping patches and then used Markov 
Random Field to constrain the counting error.

2.3.4  Multi‑density map fusion

Considering the problem of varying conditions of the input 
image, one of the solutions is to fuse density maps of mul-
tiple scales for crowd counting.

In order to overcome the difficulties of camera perspec-
tive changes and obstacle occlusion in crowd counting, 
ASD [48] proposed a network model that adaptively recali-
brates path response by implicitly discovering and modeling 
dynamic scenes. As shown by ASD in Fig. 3, the framework 
first uses a convolutional neural network to extract features 
and then uses three branches to generate a density map. Two 
of them are similar parallel channels with different receptive 
fields, which generate density maps with different granu-
larities. The third branch generates weight information for 
the density maps generated by the two branches and then 
weights the density maps to obtain the final density map. 

Experiments show that this branch greatly improved the gen-
eralization performance of the model.

Shen et al. [85] proposed a framework that combines 
detection and regression: DecideNet. As shown in Fig. 3, 
it includes three parts: the regression network RegNet, the 
detection network DetNet and the QualityNet. The former 
two parts generated two density maps, respectively, and the 
latter network weights and fuses the generated density maps 
to form a final map. This model is more robust to the vary-
ing sizes of the crowd and more suitable for a wider range 
of scenarios. Liu et al. [49] proposed a perspective-aware 
network for counting. The author took the perspective infor-
mation as auxiliary information for the crowd scale changes 
and weighted the multi-level density maps and fused them. 
Shi et al. [107] took the entire image as input, used three 
branches to predict the number of individuals in the image 
and then used a branch to weight the previous prediction 
results and fuse them all, as shown in Fig. 3.

2.3.5  GAN‑based

Generative Adversarial Networks (GAN) is a deep learn-
ing model proposed in Ref. [108]. In recent years, it has 
been one of the most promising methods for unsupervised 
learning of complex distributions. GAN includes two mod-
ules, namely a generative model and a discriminative model, 
which compete with each other to understand the distribu-
tion of actual data as much as possible. In related works on 
crowd counting, some researchers used a generator to obtain 
a density map and then used a discriminator to distinguish 
the density map from ground truth. This competition with 
each other ultimately makes the resulting density maps more 
accurate.

Similar to GAN, the model of MS-GAN proposed by 
Yang et al. [86] includes a generator and a discriminator. 
The generator is a multi-scale full convolutional network, 
which combines the features of different convolutional 
layers to generate a density map, as shown in MS-GAN-
generator in Fig. 3. The density map generated by the gen-
erator is used as negative samples and trained in combina-
tion with ground truth by the discriminator. In this way, the 
performance of the generator in the adversarial network is 
improved iteratively, and a better density map is obtained. 
The two branches of the generator use the combination of 
the inception module and the max pooling layer proposed 
by Szegedy et al. [91] to fuse the features of different levels. 
The inception module is shown in MS-inception in Fig. 3.

Wang et  al. [87] proposed an unsupervised adaptive 
learning method designed to enhance the performance of 
the model in a unseen scene. The author used multi-scale 
pyramid patches in the source and target domains for adver-
sarial training to handle different crowd scales and density 
distributions. Shen et al. [85] designed a crowd counting 
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framework based on an adversarial generative network 
model: A U-shaped network was used as the model’s gen-
erative network, and a high-resolution density map was 
screened out using a discriminator. Olmschenk et al. [109] 
was dedicated to studying how to train a crowd counting 
network model using only a small amount of data.

2.3.6  Context‑based

Some crowd counting works use the contextual semantics 
of images to guide the counting procedure. This method 
mainly uses the context and semantic information of the 
crowd scene to constrain the density map to achieve better 
performance.

CP-CNN [41] proposed a context pyramid network to 
make full use of contextual information to generate high-
precision density maps. The network consists of four parts, 
i.e., GCE (Global Context Estimator), LCE (Local Context 
Estimator), DME (Density Map Estimator) and F-CNN 
(Fusion-CNN), as shown in Fig. 3. The GCE encodes global 
information and extracts high-level semantic features, while 
classifying the entire input image into different density lev-
els; the LCE encodes local information and extracts local 
features, while classifying each patch into different density 
levels; the DME is used to directly generate density map; 
finally, the outputs of the three parts are fused by the F-CNN 
to obtain a high-quality density map. Considering that using 
only Euclidean loss will cause the density map to be blurred, 
a weighted combination of pixel-level Euclidean loss and 
adversarial loss is used as the loss function.

Chong et al. [110] did not directly count the crowd num-
ber based on the entire image but calculated the final num-
ber of individuals by using the shared computations over 
overlapping areas. Liu et al. [88] combined features of mul-
tiple receptive field sizes and each image location and then 
trained them using an end-to-end trainable network. Finally, 
the network outputs a high-quality density map.

2.3.7  Coarse‑to‑fine

Most of coarse-to-fine works first obtain a coarse density 
map and then optimize or fine-tune it to obtain the final fine-
grained density map.

In order to solve the problems of varying rotations, 
scales and perspectives caused by changing views of cam-
eras, DRSAN [45] proposed a deep recurrent space-aware 
network. The network uses the Global Feature Embedding 
model based on VGG-16 as the front end to generate the 
primary density map and then uses the Recurrent Spatial-
Aware Refinement model to optimize the generated density 
map. To be specific, the Recurrent Spatial-Aware Refine-
ment model consists of two parts: a spatial transformation 
network, which is used to dynamically locate a region from 

the density map and then convert it to a suitable size by 
bilinear interpolation. Finally, residual density learning is 
used to optimize the density map of the selected area, and 
then a high-quality density map is thus obtained, as shown 
in DRSAN in Fig. 3.

Previous works such as L2SM [111] and S-DCNet [112] 
merge the feature maps of different convolution layers and 
obtain multi-scale information through the network structure 
of the feature pyramid. In contrast, [56] only implements 
multi-scale information enhancement on a single-layer fea-
ture map and repeats this operation on different convolution 
layers to bring rich information into the subsequent regres-
sion module.

ic-CNN [46] proposed a two-stage crowd counting model. 
As shown by IC-CNN in Fig. 3, the LR branch generates 
a low-resolution density map, and the HR branch incor-
porates the feature map and the low-resolution prediction 
to generate a high-resolution density map. The model can 
also be extended to a multi-stage model, that is, iterative 
fusion is used to improve the performance of the model, 
thereby obtaining a high-quality density map. Xu et al. [111] 
simulated human behavior when counting: First counted 
the sparse area, then zoomed in the dense area for a more 
accurate counting. The network consists of two parts: Scale 
preserving network (SPN) and Learning to scale module 
(L2SM). SPN uses multi-scale feature fusion to generate the 
initial density map. L2SM divides the image into multiple 
non-overlapping regions and selects some denser regions for 
re-prediction to improve the counting accuracy. This work 
is somewhat similar to Ref. [113], which uses a Recurrent 
Attentive Zooming Network to continuously detect blurry 
areas in an image then zoom in and recheck.

2.4  Video‑based crowd counting

Crowd counting is mostly based on a still image. In addi-
tion, considering that video sequence contains timing infor-
mation that is beneficial to counting, some researchers are 
currently working on counting the number of individuals 
in the video. We will briefly describe some of these typical 
tasks as follows. 

1. ConvLSTM: Most video-based counting methods only 
consider single-frame of the video separately and ignore 
the temporal correlation between video frames, which is 
informative and beneficial for the counting context. Con-
vLSTM [114] effectively used the time correlation to 
assist the task of counting. The ConvLSTM model is an 
extension of FC-LSTM [115]. In the input-to-state and 
state-to-state, the fully connected structure is replaced 
with a convolution structure to perform feature trans-
formation, and a 3D tensor fused with spatiotemporal 
information is used as an information representation for 
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information transmission and control gate. Unlike CNN-
based methods that only consider spatial information, 
ConvLSTM model pours more attention to the temporal 
correlation between adjacent frames of the video and 
thus can effectively use the time domain information. 
This method more adequately captures the relationship 
between space and time in the video, thereby improving 
the accuracy of counting in complex scenes.

2. LSTN: Unlike LSTM-based implicit modeling method, 
LSTN [116] used a Locality-constrained Spatial Trans-
former module to explicitly capture the spatiotemporal 
dependencies in the video. The model is mainly com-
posed of two modules: the density map regression mod-
ule and the position constraint-based spatial transformer 
(LST) module. The density map regression module 
directly estimates the density map of a single frame and 
then uses the LST module to associate the density map 
of adjacent frames to output a more accurate density 
map.

  Similar to LSTN, Wu et al. [117] used crowd images 
and predicted density maps to explicitly model time 
information. They used a set of dilated residual blocks 
to model the relationship between features of adjacent 
frames of the video. At each stage, an expanded set of 
convolutions over time is used to generate the initial 
density map that is used to optimize the subsequent den-
sity map iteratively in the next stage.

3. E3D: Considering the superior performance of 3D 
convolution in motion recognition, Zou et  al. [118] 
attempted to use of 3D convolution to encode the spati-
otemporal features in the video. It encodes global con-
text information into modulation weights while rescaling 
the characteristic response of each channel, adaptively 
highlighting useful features and using short skip connec-
tions to simplify model training.

  The novel architecture temporal channel-aware (TCA) 
constructed in this paper can not only capture the time 
dependence of video sequences effectively but also fuse 
local and global spatiotemporal information. The author 
stacked multiple TCAs together to obtain a deeper 
enhanced network which achieved better performance.

4. Cross-Line Pedestrian Counting: Zheng et al. [119] pro-
posed a scalable crowd counting method, designed to 
count pedestrians crossing virtual lines when the crowd 
is highly dynamic and dense. The method includes two 
parts: local crowd density estimation and cross-line 
pedestrian counting. In order to accurately estimate the 
local crowd density, they divided the neighborhood on 
the virtual line into several blocks and enhanced the spa-
tial consistency between the local count and the closed 
area count to ensure the consistency of the local crowd 
density estimation. To address the problem of uneven 
density, they proposed a two-stage solution: First, divide 

the sample into multiple density levels and then train an 
expert regressor with overlapping operating ranges for 
each density level to offset the error caused by the first 
density classification.

5. Dynamic region division: Considering that the straight-
line double region pedestrian counting [120] method 
may divide a head into two parts, thereby introducing 
counting errors, He et al. [121] proposed a dynamic 
region partitioning algorithm to ensure the integrity 
of the counting object. On the premise of maintaining 
the integrity of the head, they used the bounding box 
and scene segmentation lines of the objects obtained 
by YOLOV3 [122] to segment the distal and proximal 
regions. For the near-end area, YOLOV3 [122] is used 
for direct pedestrian detection; for the far-end area, the 
receptive field is expanded by introducing dilated convo-
lution, and an Inception module is designed to automati-
cally select the dilation rate. Finally, the two results are 
fused to obtain global distribution information.

2.5  Extensions and related issues

In the field of crowd counting and density estimation, besides 
the aforementioned seven categories and video crowd count-
ing, there are many other works worth mentioning.

In order to locate a person’s head when counting crowd, 
Lian et al. [123] proposed an RGBD-based network archi-
tecture called RDNet. The architecture is improved from 
Ref. [124] and consists of a regression model and a detec-
tion model. The density map generated by the regression 
model is used to enhance the robustness of the detection 
model when encountering small heads. They introduced a 
depth adaptive kernel that takes the changes of head size 
into account, which makes the regression of the density 
map more robust. In addition, a depth-aware anchor is 
also designed to help anchor initialization and improve the 
model’s detection performance for small targets. Similar to 
RDNet, Sam et al. [125] aimed to locate each individual in 
the image while counting. They made full use of density 
maps to enhance the robustness of face detection models 
to small targets. The effect of their detection model named 
LSC-CNN is illustrated in Fig. 4.

CSRNet [44] (Congested Scene Recognition Network) is 
a very popular job in the field of crowd counting. Its advan-
tages include good performance, simple network architec-
ture, easy training and outstanding generalization perfor-
mance. The network is mainly composed of two parts: The 
first 13 layers of VGG16 are used as the front end for feature 
extraction, and the back end uses dilated convolutional lay-
ers to deepen the network while expanding the receptive 
field. In addition, they confirmed through experiments that 
the multi-column network designed in MCNN [15] failed 
to achieve the expected effect but instead introduced extra 
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calculations, resulting in reduced real-time performance 
of counting. This raises debates about the advantages and 
disadvantages of single-column and multi-column network 
design, which we discussed in Sect. 4.2.

Aiming at the problem of high background noise in crowd 
counting, researchers use a branch to divide the background 
and foreground of the image, thereby improving the accu-
racy of the density map. More typical works in this area are 
Ref. [127] and [98]. The former uses a network of inception 
structure, as shown in MA-inception in Fig. 3.

For the perspective problem caused by camera angle 
changes in crowd counting, Kang et  al. [128] used the 
camera’s angle, height and vertical field of view as extra 
information to assist the counting. Marsden et al. [129] fed 
multiple scales of the input image into the network model 
and then used the average of the number of individuals as the 
predicted value. W-net [130] introduced independent decod-
ing enhancement branches to U-net [131] to speed up model 
convergence. Ding et al. [132] used ResNet-based deep 
recursive network for crowd counting. The recursive struc-
ture makes this model capable of capturing statistical pat-
terns in a crowd environment without increasing the number 
of parameters. Zhao et al. [133] used spatial, semantic and 
numeric attributes to assist in training the model. Wan et al. 
[134] counted the crowd using relevant semantic informa-
tion between samples. Huang et al. [135] counted from the 
perspective of semantic modeling, making full use of com-
posite body-part semantic structure information. Y. Yang 
et al. [136] proposed a reverse perspective network to deal 
with the scale change of the input image. The network can 
explicitly evaluate the perspective distortion and effectively 
correct the distortion by warping the input image uniformly.

In addition, hwan Oh et al. [137] proposed a scalable neu-
ral network framework that uses the ensemble strategy of 
bootstrap to quantify the uncertainty after decomposition. 
This is the first work to quantify the uncertainty of crowd 

counting. Trying to avoid over-fitting problems, Shi et al. 
[138] took the combined dataset as the model’s input and uti-
lized multitask training to learn a generalizable representa-
tion across similar domains. Wei et al. [139] were dedicated 
to counting fast moving crowds. Chen et al. [72] used the 
method of cumulative attribute space learning to deal with 
the sparseness and imbalance of data. Shi et al. [140] used 
Deep Negative Correlation Learning to generate a general-
izable feature learning strategy that transforms regression 
counting problems into integration problems. Chan et al. 
[11] were committed to counting individuals while protect-
ing privacy. Oncel [141] used a covariance matrix as a target 
descriptor to detect pedestrians in still images. Arteta et al. 
[142] used foreground and background segmentation and 
local uncertainty estimation to enhance density map esti-
mation. The author used penguin counting as an example to 
design a deep multitasking structure to effectively utilize the 
mutual assistance between tasks. Experiments showed that 
the multitask density estimation method greatly improved 
accuracy compared with the single-task density estimation 
method. The deep residual structure ResnetCrowd proposed 
by ResnetCrowd [143] can be used for crowd counting, vio-
lent behavior detection and density classes classification. To 
train and evaluate the proposed multi-objective technology, 
they created a new dataset, called Multi Task Crowd, which 
has large scene differences, reasonable distribution of violent 
and non-violent images, and significant differences in crowd 
size. Most of the existing crowd counting works manually 
design the network to learn the density estimation map. Y. 
Hu et al. [52] used Neural Architecture Search (NAS) to 
search the encoder–decoder structure in nine extraction and 
fusion cells, which uses dilated convolution to capture multi-
scale information. Yang et al. [136] proposed a lightweight 
and effective structured knowledge transfer method which 
transfers the structured knowledge of the crowd counting 
model to a lightweight model. Meanwhile, it increases the 

Fig. 4  The left picture shows the detection effect of Tiny Face detec-
tor [126]. Only 731 individuals were detected among 1151 people, 
and the main errors were concentrated in the crowded areas (such 

as in the red ellipses). In contrast, the right side shows the detection 
effect of LSC-CNN [125], and 999 people were detected. Reproduced 
with permission of Ref. [125], Copyright of 2020 IEEE
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efficiency by several times while maintaining the accuracy 
of the original model. Reinforcement learning is used to 
transform the crowd counting problem into a sequential deci-
sion-making problem. Different from the existing counting 
models that directly output the number of individuals in one 
step, Liu et al. [53] divided the one-step estimation into a 
series of sub-decision problems. Liu et al. [144] proposed a 
semi-supervised learning method that uses unlabeled data 
to train a general feature extractor. Considering that the 
location information of people in the image is costly, Yang 
et al. [145] proposed a weakly supervised network that does 
not require location supervision, which mainly uses the num-
ber of individuals of the image for counting.

3  Datasets and metrics

Datasets are of great significance for training and evaluating 
crowd counting models. To train more generalized models, 
researchers have built a wide variety of datasets. Early data-
sets are mostly images or video frames with low crowd den-
sity and similar scenarios. Most of the later datasets often 
have large sample size and more accurate labels. In terms of 
sample size, these datasets mostly cover a wide range of fac-
tors: diverse scenarios, varying crowd densities, large head 
scale span, etc., which are much closer to the data distribu-
tion in real applications. From the perspective of labeling 
accuracy, the density maps generated by these datasets are 
more accurate and reasonable. We will elaborate and analyze 
these datasets and perform a performance comparison of 
popular crowd counting methods on the datasets. We also 
summarized some works on target domains with less labeled 
data. Finally, we explained and evaluated the metrics com-
monly used in crowd counting.

3.1  Datasets

The most popular datasets available in crowd counting are 
UCSD [11], Mall [12], UCF_CC_50 [13], WorldExpo 10 
[14], ShanghaiTech [15], UCF-QNRF [16] and the newly 
proposed virtual synthetic dataset GCC [17]. We will give 
a brief introduction of these datasets and evaluate the per-
formance of popular models based on these benchmarks.

A. UCSD
The UCSD dataset [11] consists of 2000 frames in a 

video sequence, with every five frames corresponding to 
one ground truth. It was acquired by a fixed camera mounted 
above a sidewalk, so the scenes relatively lack of variation. 
In addition, the density of crowd on the sidewalks varies 
from sparse to crowded. This dataset is the first dataset 
created in crowd counting. Since the dataset was released 
earlier, there are many limitations with the dataset, such as 

images were collected from a single fixed position and the 
scenes were inevitably single. The data distribution does not 
match with many real scenes, which makes it unsuitable for 
more general applications.

B. Mall
The Mall dataset [12] consists of 2000 320 × 230 video 

frames with 6000 labeled pedestrians. The labeled individ-
uals were provided by marking the pedestrian head of all 
frames. Compared with the USCD dataset, the Mall dataset 
has a higher crowd density and more diverse scenes.

C. UCF_CC_50
The UCF_CC_50 dataset [13] is composed of 50 different 

resolution images. Each image contains an average of 1280 
people. The entire dataset includes 63,075 people totally. 
The number of individuals in each image is between 94 and 
4543, and some images contain very dense crowds. This 
dataset also contains much more diverse scenes, such as 
concert hall, protest rally and gymnasium. Considering the 
dataset is relatively small for large capacity models, Idrees 
et al. [13] defined a cross-validation protocol for training 
and validating models.

D. WorldExpo 10
The WorldExpo 10 dataset [14] consists of 3980 

576 × 720 video frames, with a total of 199,923 labeled 
pedestrians. Its training set is derived from 1127 one-minute 
video sequences in 103 scenes, and its test set is derived 
from five one-hour video sequences in five different scenes. 
Each test scene contains 120 frames of images, and the num-
ber of individuals in each frame is between 1 and 220.

E. ShanghaiTech
The ShanghaiTech dataset [15] contains a total of 1198 

labeled images and 330,165 labeled heads, which are divided 
into A and B parts. Part A contains 482 images, of which the 
training set and the test set have 300 and 182 images, respec-
tively. These images are collected from the Internet. Part B 
contains 400 training images and 316 test images which are 
taken in Shanghai’s urban streets. Compared with Part A, 
the crowd density in Part B is relatively less. This dataset 
covers multiple scenarios and different density levels. The 
ShanghaiTech dataset is a very challenging dataset and most 
of recently crowd counting works are based on this dataset 
for comparison.

F. GCC 
The images in GCC were taken from Grand Theft Auto 

V (GTA5). Wang et al. [17] designed a data collector and 
labeler to capture stable images and their head labels in 
the game. The dataset covers 400 types of scenes, and the 
individuals in the scenes have different skin colors, gen-
ders, appearances, etc. The author also used a step-by-step 
approach to break the limit of the maximum number of indi-
viduals in the image. This is the largest dataset in crowd 
counting, both in terms of sample size and the scenarios 
covered. Using it to pre-train the model and then fine-tune 
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the model with actual data usually can get better counting 
performance.

G. NWPU-Crowd
Considering that the CNN-based method requires a huge 

dataset to support, but the existing datasets are too small, so 
Wang et al. [146] proposed the NWPU-Crowd. It is currently 
the largest dataset in crowd counting, with 5109 images and 
2,133,238 labeled entities. Furthermore, the dataset also 
contains some negative samples, which help to enhance the 
robustness of the model. In addition, it contains various illu-
mination scenes and has the largest density range [0, 20033].

3.2  Annotation Methods of Datasets

There is no doubt that how to give accurate ground truth of 
crowd counting annotation is of critical importance. Differ-
ent datasets are quite different in density map generation. 
The main density map generation methods are as follows.

A. Point-wise convolution of human head
Lempitsky and Zisserman [36] first introduced the con-

cept of density map in crowd counting, which led this field 
into a new stage and had a great influence on the subsequent 
works. To avoid the difficulties of detecting and locating 
objects, the counting problem is regarded as a mapping 
problem between the input and the density map. Finally, the 
density map is used by a regress method to obtain the total 
number of the individuals. To be specific, they labeled the 
human head in the image as a point, and then performed 
2D Gaussian convolution on each point to obtain the cor-
responding ground truth.

B. MCNN
Due to the large variation in scales of head in most 

images, MCNN [15] avoided directly using the static two-
dimensional Gaussian convolution methods as in Ref. [36], 
they introduced a geometric adaptive convolution kernel to 
promote the accuracy of the density map. The size of the 
Gaussian convolution kernel is determined by the k heads 
near the central position. Therefore, the generated density 
map is closer to the actual distribution of the crowd. Moreo-
ver, in order to avoid the irrationality of the density map due 
to the sparseness of the human head, the size of the Gaussian 
convolution kernel is generally limited to 100 pixels.

C. Content-aware density map
Oghaz et  al. [147] divided the previous density map 

generation methods into two categories: static two-dimen-
sional Gaussian method, such as Ref. [36], and dynamic 
two-dimensional Gaussian method [15]. The static method 
does not consider the size changes of the human head, which 
prevent the density map to be more accurate. Dynamic two-
dimensional Gaussian method try to complement this short-
coming in Ref. [36]. However, it does not take into account 
the content information of the crowd in the image, which 
may introduce a lot of noise and has a negative impact on the 

counting accuracy. The author combined the Chan-Vese seg-
mentation strategy, two-dimensional Gaussian convolution 
kernel and brute-force nearest-point search to improve the 
performance, and used content-aware technology to make up 
for the lack of accuracy of previous methods. Experiments 
show that models using the density maps generated by this 
method can achieve much higher accuracy.

D. IKNN map
Olmschenk et al. [148] noticed that the previous density 

map generation methods still had two aspects that can be 
improved. Firstly, consider an extreme case, each pedes-
trian is completely residing on a single pixel in the density 
map, the network predicting density 1 pixel away from the 
correct labeling is considered just as incorrect as 10 pixels 
away from the correct labeling. Obviously, it is not desired 
because a discontinuous training gradient is generated. 
Another aspect is that some localities have very large Gauss-
ian distributions, which also leads to inaccurate spatial infor-
mation of density locations. Therefore, the author proposed 
IKNN (Inverse K-Nearest Neighbor) map, which provides 
a substantial spatial gradient. They experimentally dem-
onstrated that using the IKNN map to train existing crowd 
counting models can improve the performance notably.

E. Point supervised Bayesian estimation
Existing density map generation methods mainly use 

pixel-wise supervised method, which uses Gaussian kernel 
convolution to transform labeled points into the according 
density map. Ma et al. [149] proposed a Bayesian loss func-
tion based on point supervision, which constructs a density 
contribution probability model for supervised training from 
the point annotations perspective.

3.3  Evaluation metrics

We briefly analyze and evaluate the existing evaluation cri-
teria of the crowd counting model from the two aspects of 
objects quantity and the density map. Following are the most 
widely used evaluation criteria.

3.3.1  For evaluating objects quantity

MAE (mean absolute error) is a commonly used evaluation 
criteria in regression models and represents the sum of the 
absolute values of the differences between the predicted val-
ues and ground truth, which is defined as follows:

where m represents the number of objects, yi is the ground 
truth and ŷi is the predicted value.

Mean square error (MSE) is another commonly used 
regression evaluation criteria, which represents the sum of 

(1)MAE =
1

m

m∑

i=1

|yi − ŷi|
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the squares of the distances between predicted values and 
ground truth, which is defined as follows:

where the variables have same meaning as Eq. 1. Compared 
with MAE, MSE gives greater weight to the outliers, which 
better reflects the robustness of the model.

3.3.2  For evaluating the Density map

Peak signal-to-noise ratio (PSNR) is a commonly used 
measure of the similarity of two images. It is based on the 
error between corresponding pixels. A larger value indicates 
less image distortion.

The calculation formula is shown in Eq. 3, where MSE is 
shown in Eq. 2. It is an objective evaluation standard that 
does not take into account the visual characteristics of the 
human eye. Therefore, in some cases, the evaluation results 
are inconsistent with human subjective perception.

SSIM [150] (structural similarity) is also a measure of 
the similarity of two images. As an implementation of struc-
tural similarity theory, SSIM models the distortion of an 
image as the product of three different factors: brightness, 
contrast and structure. The mean is used as an estimate of 
brightness, the standard deviation is used as an estimate of 
contrast and covariance is used as a measure of structural 
similarity. The value of SSIM is in the range of [0, 1], and 
the larger the value, the smaller the image distortion. SSIM 
can make up for the defect that MSE cannot measure the 
similarity of image structure. The calculation formula is 
shown as follows:

where �x is the average of x, �y is the average of y, �2
x
 is the 

variance of x, �2
y
 is the variance of y, �xy is the covariance of x 

and y. c1 = (k1L)
2,c2 = (k2L)

2 are constants used to maintain 
stability, L is the dynamic range of pixel values, k1 = 0.01 , 
k2 = 0.03.

3.4  Performance comparison

We compare the performance of off-the-shelf crowd count-
ing models based on several popular benchmarks, as 
shown in table 1 and 2. Specifically, the datasets include 

(2)MSE =
1

m

m∑

i=1

(yi − ŷi)
2

(3)PSNR = 10 lg
(2n − 1)2

MSE

(4)SSIM(x, y) =
(2�x�y + c1)(2�xy + c2)

(�2
x
+ �2

y
+ c1)(�

2
x
+ �2

y
+ c2)

ShanghaiTech [15], UCF_CC_50 [13], WorldExpo‘10 [14], 
and the evaluation metrics are MAE and MSE.

We made a brief summary of the table: The best per-
forming work in ShanghaiTech A is PGCNet [157], the best 
performing work in ShanghaiTech B is S-DCNet [112], the 
best performing work in UCF_CC_50 is PaDNet [104] and 
the best performer in WorldExpo’10 is DSSINet [156].

3.5  Crowd counting with small sample data

Except for GCC [17], the above datasets need to spend a lot 
of human and financial resources for labeling. Undoubtedly, 
the quality of the labels has a major influence on the perfor-
mance of the model. Moreover, as the number of network 
parameters increases, the model’s demand for large datasets 
becomes more urgent. As a result, researchers have begun to 
explore ways to avoid annotating too many data manually.

A. L2R and SL2R

L2R [18] used the learning-to-rank framework to sort 
unlabeled images and facilitate the training of the counting 
model. They cropped the image into multiple small patches 
and then ranked them according to the observation that the 
number of individuals in the sub-image is less than or equal 
to the number of individuals in the original image. Besides, 
they proposed two network models: a density estimation 
network with multi-scale input patches and a network that 
ranks unlabeled data. They verified three following training 
methods using the labeled data and sorted data: training with 
the sorted data and then fine-tuning with the labeled data; 
alternate training with two types of data; multitask training. 
The results hint that the performance of the three training 
models is better than the model trained only by the labeled 
data. Among them, the performance of the multitask training 
model is usually the best.

SL2R [21] is a further work based on L2R. The author 
took ranking as a proxy task and proposed a backpropagation 
technique for Siamese networks, thereby avoiding redundant 
calculations caused by multi-branch network structures.

B. SFCN

Wang et al. [17] proposed a virtual synthetic dataset 
called GCC. The images in the dataset are derived from 
GTA5, with higher resolution and more diverse scenes. 
Due to the setting of GTA5, an image contains up to 256 
people, so they used integration between images to break 
through the limitation of the number of individuals. The 
domain adaptive method proposed in the paper can effec-
tively learn the domain invariant features between synthetic 
data and real data. More specifically, GAN-related technolo-
gies are used to make synthetic images more realistic, and 
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the resulting images can be directly used for model training. 
Besides, they experimentally confirmed that training existing 
models on this dataset can indeed improve model counting 

performance. Compared with traditional datasets, GCC has 
richer scenes, more accurate labels, larger sample capacity 
and higher resolution. For model training, two strategies can 

Table 1  Comparison of crowd counting methods on shanghaiTech and UCF_CC_50 datasets

Year-journal/conference Methods ShanghaiTechPart_A Part_B UCF_CC_50

MAE MSE MAE MSE MAE MSE

2016-CVPR MCNN [15] 110.2 173.2 26.4 41.3 377.6 509.1
2017-AVSS CMTL [151] 101.3 152.4 20 31.1 322.8 397.9
2017-CVPR Switching CNN [42] 90.4 135 21.6 33.4 318.1 439.2
2017-ICIP MSCNN [40] 83.8 127.4 17.7 30.2 363.7 468.4
2017-ICCV CP-CNN [41] 73.6 106.4 20.1 30.1 – –
2018-TIP BSAD [135] – – 20.2 35.6 409.5 563.7
2018-AAAI TDF-CNN [152] 97.5 145.1 20.7 32.8 354.7 491.4
2018-WACV SaCNN [43] 86.8 139.2 16.2 25.8 314.9 424.8
2018-CVPR ACSCP [85] 75.7 102.7 17.4 27.4 291 404.6
2018-CVPR D-ConvNet-v1 [153] 73.5 112.3 18.7 26 – –
2018-CVPR IG-CNN [84] 72.5 118.2 13.6 21.1 291.4 349.4
2018-CVPR L2R [18] (Query-by-example) 72 106.6 14.4 23.8 291.5 397.6
2018-CVPR L2R [18] (Keyword) 73.6 112 13.7 21.4 279.6 388.9
2018-CVPR DecideNet [85] – – 21.53 31.98 – –
2018-IJCAI DRSAN [45] 69.3 96.4 11.1 18.2 219.2 250.2
2018-ECCV ic-CNN [46] (one stage) 69.8 117.3 10.4 16.7 – –
2018-ECCV ic-CNN [46] (two stages) 68.5 116.2 10.7 16 260.9 365.5
2018-CVPR CSRNet [44] 68.2 115 10.6 16 – –
2018-ECCV SANet [47] 67 104.5 8.4 13.6 258.4 334.9
2019-AAAI GWTA-CCNN [19] 154.7 229.4 – - - – –
2019-ICASSP ASD [48] 65.6 98 8.5 13.7 196.2 270.9
2019-ICCV CFF [154] 65.2 109.4 7.2 12.2 – –
2019-CVPR SFCN [17] 64.8 107.5 7.6 13 214.2 318.2
2019-ICCV SPN+L2SM [111] 64.2 98.4 7.2 11.1 188.4 315.3
2019-CVPR ADCrowdNet [50] (AMG-bAttn-DME) 63.2 98.9 7.7 12.9 273.6 362.0
2019-CVPR ADCrowdNet [50] (AMG-DME) 66.1 102.1 7.6 13.9 257.9 357.7
2019-CVPR PACNN [49] 66.3 106.4 8.9 13.5 267.9 357.8
2019-CVPR TEDnet [79] 64.2 104.5 8.2 12.8 249.4 354.5
2019-CVPR PACNN [49]+CSRNet [72] 62.4 102 7.6 11.8 241.7 320.7
2019-CVPR CAN [88] 62.3 100 7.8 12.2 212.2 243.7
2019-TIP HA-CCN [100] 62.9 94.9 8.1 13.4 – –
2019-ICCV BL [149] 62.8 101.8 7.7 12.7 229.3 308.2
2019-WACV SPN [155] 61.7 99.5 9.4 14.4 – –
2019-ICCV DSSINet [156] 60.63 96.04 6.85 10.34 216.9 302.4
2019-TIP PaDNet [104] 59.2 98.1 8.1 12.2 185.8 278.3
2019-ICCV S-DCNet [112] 58.3 95 6.7 10.7 204.2 301.3
2019-ICCV PGCNet [157] 57.0 86.0 8.4 13.6 244.6 361.2
2020-CVPR ADSCNet [55] 55.4 97.7 6.4 11.3 – –
2020-CVPR ASNet [54] 57.78 90.13 – – 174.84 251.63
2020-ECCV AMRNet [56] 61.59 98.36 7.02 11.00 184.0 265.8
2020-ECCV LibraNet [53] 55.9 97.1 7.3 11.3 181.2 262.2
2020-ECCV AMSNet [52] 56.7 93.4 6.7 10.2 208.4 297.4
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be adopted, one is to first train with GCC and then fine-tune 
the model with the real dataset, the other is to use only GCC 
to train the model. Both strategies can achieve much better 
performance.

C. CAC 

Most current counting works are dedicated to count-
ing only one specific kind of objects. However, CAC [20] 
focuses on using a model to count objects of any category. 
The author used the self-similarity property of images to 
convert the counting problem into a matching problem. The 
so-called self-similarity property means that the image can 
be represented by some specific repeated blocks, and these 
blocks are called exemplar. To this end, they proposed a 
matching network that can be used for unknown classes: 
Generic Matching Networks, thereby converting the count-
ing problem into a matching problem. Moreover, an adapter 
module is designed to meet the needs of different users, so 
that it only needs a small number of labeled data to train a 
high-performance model, which is of great significance for 
scenarios lacking training data.

D. GWTA-CCNN

Sam et al. [19] proposed a nearly unsupervised method 
based on the Grid Winner-Take-All (GWTA) autoencoder. 
This method first encodes the input image, then decodes 

and reconstructs it, and uses the similarity between the 
images as a loss function to train the encoder and decoder. 
Almost 100% of the parameters in this model are obtained 
through unsupervised training. Comparative experiments 
showed that the performance of the GWTA method using 
only a small amount of data is better than the supervised 
counterpart.

4  Application and discussion

4.1  Application

At present, crowd counting is mainly used in scenarios such 
as crowd security, video surveillance and traffic analysis. 
Monitoring the number of individuals in assembly activi-
ties is an important part of crowd security, such as sports 
events, public demonstrations, political gatherings, concerts 
and other scenarios. Information about number of individu-
als can be used not only to assist the security forces but 
also to evacuate people in a more timely and effective man-
ner, thereby reducing the possibility of accidents. Secondly, 
crowd counting can also be used to monitor traffic flow 
information, which not only helps road construction but also 
makes vehicle scheduling plans more reasonable. Moreover, 
statistics on the number of individuals staying in front of 
different shelves in the shopping mall can help to assess the 
popularity of different products, which is conducive to a 

Table 2  Comparison of 
crowd counting methods on 
WorldExpo’10 datasets

Year-journal/conference Method WorldExpo’10

S1 S2 S3 S4 S5 Avg.

2015-CVPR Zhang 2015 [14] 9.8 14.1 14.3 22.2 3.7 12.9
2016-CVPR MCNN [15] 3.4 20.6 12.9 13.0 8.1 11.6
2017-ICCV ConvLSTM-nt [114] 8.6 16.9 14.6 15.4 4 11.9
2017-CVPR Switching CNN [42] 4.4 15.7 10 11 5.9 9.4
2017-ICCV ConvLSTM [114] 7.1 15.2 15.2 13.9 3.5 10.9
2017-ICCV CP-CNN [41] 2.9 14.7 10.5 10.4 5.8 8.86
2017-ICCV Bidirectional ConvLSTM [114] 6.8 14.5 14.9 13.5 3.1 10.6
2018-CVPR DecideNet [85] 2 13.14 8.9 17.4 4.75 9.23
2018-CVPR CSRNet [44] 2.9 11.5 8.6 16.6 3.4 8.6
2018-CVPR ACSCP [85] 2.8 14.05 9.6 8.1 2.9 7.5
2018-ECCV SANet [47] 2.6 13.2 9 13.3 3 8.2
2018-TIP BSAD [135] 4.1 21.7 11.9 11 3.5 10.5
2018-IJCAI DRSAN [45] 2.6 11.8 10.3 10.4 3.7 7.76
2019-ICCV ADCrowdNet [50] (AMG-bAttn-DME) 1.7 14.4 11.5 7.9 3 7.7
2019-CVPR ADCrowdNet [50] (AMG-attn-DME) 1.6 13.2 8.7 10.6 2.6 7.3
2019-CVPR TEDnet [79] 2.3 10.1 11.3 13.8 2.6 8
2019-CVPR CAN [88] 2.9 12 10 7.9 4.3 7.4
2019-ICCV DSSINet [156] 1.57 9.51 9.46 10.35 2.49 6.67
2020-CVPR ASNet [54] 2.22 10.11 8.89 7.14 4.84 6.64
2020-ECCV AMSNet [52] 1.6 8.8 10.8 10.4 2.5 6.8
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more reasonable layout of goods by merchants. Moreover, it 
is also a good research direction to expand crowd counting 
to the field of microscopy counting.

4.2  Discussion

4.2.1  Challenges and solutions

1. Scale variation
  The scale variation is a tough challenging in crowd 

counting and density estimation, including changes in 
the scale of the crowd and the size of the head. As shown 
in a and b in Fig. 5, the number of individuals in differ-
ent scenes varies greatly, when the crowd is dense, the 
number of individuals can reach thousands, and when 
sparse, there are only dozens of individuals. Such a huge 
quantity difference is a daunting challenge for the model. 
In addition, as shown in c in Fig. 5, due to the camera 
angle, the size of the human head in the image is inevi-
tably very different.

  As described in Sect. 2.3.1, there are currently two 
main solutions: fusion of multi-scale features and fusion 
of multi-scale density maps. By fusing features or den-
sity maps of different levels, the scale variation can be 
alleviated to some extent. Some researchers have done 
a lot of works based on the idea of multi-scale feature 
fusion: Multi-column networks with different receptive 
fields are used for multi-scale feature extraction, such as 
MCNN [15] and CrowdNet [38]; fusion of feature maps 
generated in different stages, such as SaCNN [43] and 
TEDnet [79]; use inception to directly merge multi-scale 
features, such as ADCrowdNet [50] and SCNet [95]; 
multi-scale density maps fusion, such as Ref. [48] and 
[85].

2. Occlusion
  Almost all images contain occlusion problem, and 

it becomes more severe as the crowd becomes denser. 
As shown in d in Fig. 5, when the crowd is dense, the 
occlusion is becoming grievous which makes counting 
extremely difficult. Most current works utilize the pow-
erful feature extraction ability and learning ability of 
convolutional neural network to ease this difficulty.

3. Uneven distribution

  In most cases, the individuals are not evenly distrib-
uted, so the crowd density distribution varies greatly, 
as shown in e in Fig. 5. Researchers have proposed two 
solutions: using attention mechanism and patch-based 
processing. The attention mechanism makes the model 
pay more attention to the crowded area and reduces 
the counting error in the corresponding part, thereby 
improving the performance. The MSAN [80] and Attend 
To Count [83] models are in this category. Other meth-
ods such as Hydra-CNN [39] and Switch-CNN [42] 
divide the input image into multiple patches and then 
process different patches, respectively, thereby alleviat-
ing the uneven distribution problem.

4. Perspectives variation
  Changes in camera position and angle of view directly 

lead to scale variation in the image, occlusion and une-
ven distribution.

5. Others
  In addition to the main difficulties mentioned above, 

crowd counting also faces many other difficulties, such 
as small datasets, high background noise and large dif-
ferences in light levels.

4.2.2  Trends

1. Design of architectures
  Since the architecture of MCNN [15] was first put 

forward, a lot of works follows the idea of using multi-
column networks. However, CSRNet [44] pointed out 
that the design of the multi-column network did not 
achieve the expected accuracy but increased extra cal-
culation. In other words, the multi-column network 
design can somewhat improve the counting perfor-
mance, but the calculation amount introduced is too 
large. Therefore, multi-column networks are not recom-
mended for real-time applications, however, the idea of 
multi-scale feature fusion is worth further exploration. 
Multi-scale feature fusion in a single-column network 
can be achieved through continuous fusion of features 
at various levels or inception structures, such as the 
combination of inception and dilated convolution in 
ADCrowdnet [50], jump connection in SaCNN [43]. 
Further research is encouraged and better performance 
can be expected.

Fig. 5  Typical challenges in crowd counting, reproduced with permission of Ref. [15], Copyright of 2020 IEEE
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  Moreover, many pruning works have fully proved 
that a set of parameters contributes little in the model, 
which bloats the model and limits its further application. 
Therefore, more lightweight models are likely to emerge 
in the future.

2. Construction of datasets
  For the present, lack of data or large datasets remains 

one of the major difficulties in crowd counting. As men-
tioned in Sect. 3.1, most of the existing datasets have 
various problems, such as single scene (UCSD [11]), 
single angle (Mall [12]), small capacity (UCF_CC_50 
[13]) and so on. For the construction of subsequent data-
sets, we make a few suggestions here:

a. Sample capacity. Deep learning requires huge sample 
capacity, which is often the premise of training a high-
performance model. For existing datasets, UCSD [11] 
and Mall [12] contain 2000 images, UCF_CC_50 [13] 
contains 50 images, WorldExpo 10 [14] contains 3980 
images, ShanghaiTech [15] contains 1198 images and 
GCC [17] contains 15212 virtual synthetic images. 
Compared with the datasets in the object detection field 
(such as MS COCO [158] and Caltech [159]) which 
commonly contains tens of thousands of samples, the 
dataset of the crowd counting field is extremely scarce.

b. Scene diversity. A good dataset requires not only a large 
sample size but rich scenes as well. This is usually the 
prime difficulty to overcome because it needs to take 
multiple sets of images in multiple locations, multiple 
angles, multiple lighting conditions.

c. Image quality. The purpose of the dataset is to make 
the trained model perform the best performance under 
the specific image. Therefore, the dataset should match 
the actual application scenarios as much as possible. 
Considering the diversity of image resolution in reality, 
cluster analysis is recommended to guide the distribution 
of image resolution in the dataset.

d. Annotation method. The annotation steps of various 
datasets are relatively consistent. First, manually mark 
every head in the image, and then the “ground truth” 
density map is generated by various methods. Quite 
evidently, the quality of the dataset depends largely on 
the performance of the annotation method. As described 
in Sect. 3.2, current methods include conversion using 
Gaussian kernel [15, 36], content-aware [147], Inverse 
K-Nearest Neighbor [148] and density contribution 
probability model [149]. Further use of context infor-
mation and optimization of image edge parts should be 
considered for continued exploration.

3. Attention mechanism
  Attention mechanism is currently mainly used to 

highlight crowded areas in the image and then optimize 
its counting effect, which solves the problem of uneven 
population distribution to a certain extent. Research-

ers currently mainly use the attention mechanism by 
scale, channel, space, etc., and have achieved remark-
able results. However, the ideal effect has not yet been 
achieved and there is still much room for improvement. 
More accurate attention mechanism can be considered 
in the future to be applied to the processing of complex 
backgrounds in images, the generation of finer-grained 
density maps and more accurate counting.

4. Cross-domain integration
  Many fields of computer vision can complement and 

promote each other. As mentioned above, the combi-
nation of crowd counting and small object detection 
can effectively enhance the detection effect [123, 125]. 
However, from the perspective of actual results (as 
shown in Fig. 4), there is still much room for improve-
ment. At present, there exist little related works in the 
research direction, and more researches are encouraged 
to explore. Moreover, subsequent studies may consider 
combining crowd counting with super-resolution to 
improve the counting effect of dense crowd areas in the 
image.

5. Crowd location
  A lot of works are devoted to drawing fine-grained 

density maps, and the effect is remarkable. As the den-
sity map becomes more and more refined, it is gradu-
ally possible to accurately locate the crowd in the image 
based on the density map. But for the time being there 
is no similar work yet, we encourage further research in 
this direction.

6. Few-shot Learning
  In computer vision, we occasionally encounter prob-

lems for other kinds of object counting, not only human 
individuals. However, these categories of target usually 
lack a large number of datasets that are necessary for 
training an acceptable model, i.e., the problem of few-
shot learning in encountered. Section 3.5 summarizes 
some existing works of general category object detec-
tion. Further research can be considered in the future 
research work.

7. Image processing: patches or whole
  As described in Sect. 2.3.3, the input image is divided 

into multiple small patches and processed separately, 
thereby alleviating the problem of uneven distribution of 
crowd to some extent. In contrast, the attention mecha-
nism tries to solve this problem in an alternative mode. 
We need to devote more efforts to figure out a loss func-
tion suitable for specific situations.

8. Loss function
  Designing an appropriate loss function is critical for 

training a well-performed model. The most commonly 
used loss functions in crowd counting and density 
estimation are MAE, MSE, RMSE, etc. In addition, 
there are some customized loss functions, such as the 
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combination loss designed in TEDnet [79], a combina-
tion of adversarial loss and pixel-level Euclidean loss 
in CP-CNN [41], the combination of the L2 loss and 
scale-aware losses in Ref. [80], etc. Other specific loss 
functions can be examined for more accurate perfor-
mance.

5  Conclusion

This article briefly summarizes the traditional crowd count-
ing methods and the procedure of their development. We 
focused on the CNN-based crowd counting methods and 
divided them into seven categories according to their guid-
ing ideology and then expounded separately. Secondly, we 
described some datasets and pointed out various existing 
annotation methods in detail. In order to compare the per-
formance of the model more specifically, we tabulated the 
results of some popular methods on the mainstream data-
sets. In addition, we also summarized the work of video-
based crowd counting and few-shot learning. Finally, we 
discussed the difficulties faced in crowd counting and their 
corresponding solutions and conclusions, future trends. We 
hope that this review will give an overall understanding of 
crowd counting and density estimation. The field still needs 
further research, and it is encouraged that more researchers 
focus on this field and make it more applicable in the future.
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